

Spectroscopy exercise: Raman scattering, UV-Visible and absorption spectra

Sahar Ashtari

Raman scattering

The normal Raman signals represent the inelastic scattering of the incident light after its absorption by the molecule Lan induces a vibrational and rotational excitation.

Raman and Krishnan, 1928 Landsberg and Mandelstam, 1928

Raman selection rules

During this phenomena, the change in the polarizability of the system for each normal mode gives rise to the intensity of the Raman bands

 $(\partial \alpha / \partial Q_K)_{Q_k=0} \neq 0$

Raman scattering calculations in Orca

In order to predict the Raman spectrum of a compound one has to know the derivatives of the polarizability with respect to the normal modes.

In Orca, a numerical frequency run combined with a polarizability calculation will calculate the Raman spectrum too.

Key words:

NumFreq: command, runs a numerical frequency calculation. %elprop Polar 1 end: block, runs a polarizability calculation.

Raman practice:

Calculate the static Raman spectrum for H_2CO molecule using the following coordinates, at RHF/STO-3G level of theory.

С	0.000000	0.000000	-0.533905
0	0.000000	0.000000	0.682807
h	0.000000	0.926563	-1.129511
h	0.000000	-0.926563	-1.129511

Open a text editor of your choice (like NotePad or NotePad++) and start making the ORCA input file. After you are finished save the file with the .inp extension.

- 1 ! RHF STO-3G TightSCF SmallPrint
- 2 ! Opt NumFreq
- 3 %elprop Polar 1
- 4 end

 \star

- 5 * xyz 0 1
- 6 c 0.000000 0.000000 -0.533905
- 7 o 0.000000 0.000000 0.682807
- 8 h 0.000000 0.926563 -1.129511
- 9 h 0.000000 -0.926563 -1.129511

10

Check the output file for normal termination and analyse/visualize the results of the calculation.

Before the calculation of Raman activities, the numerical frequency calculation is performed.

<<< Energy and Gradient at the input geometry >>>

<<<	Energy and Gradie	ent at displac	ced	geometries	>>>
	<<<>Displacing	1/coordinate	1	(+)>>>	
	<	1/coordinate	1	(-)>>>	
	<	1/coordinate	2	(+)>>>	
	<	1/coordinate	2	(-)>>>	
	<	1/coordinate	3	(+)>>>	
	<	1/coordinate	3	(-)>>>	
	<	2/coordinate	1	(+)>>>	
	<	2/coordinate	1	(-)>>>	
	<	2/coordinate	2	(+)>>>	
	<	2/coordinate	2	(-)>>>	
	<	2/coordinate	3	(+)>>>	
	<	2/coordinate	3	(-)>>>	
	<	3/coordinate	1	(+)>>>	
	<	3/coordinate	1	(-)>>>	
	<	3/coordinate	2	(+)>>>	
	<	3/coordinate	2	(-)>>>	
	<	3/coordinate	3	(+)>>>	
	<	3/coordinate	3	(-)>>>	
	<	4/coordinate	1	(+)>>>	
	<	4/coordinate	1	(-)>>>	
	<	4/coordinate	2	(+)>>>	
	<	4/coordinate	2	(-)>>>	
	<	4/coordinate	3	(+)>>>	7
	<	4/coordinate	3	(-)>>>	/

Check the output file for normal termination and analyse/visualize the results of the calculation.

Under the title "RAMAN SPECTRUM" we can find the activities (in Å⁴/AMU) and the Raman depolarization ratios:

RAMAN SPECTRUM							
Mode	freq (cm**-1)	Activity	Depolarization				
6:	1277.66	0.000000	0.000000				
7:	1397.45	0.000000	0.00000				
8:	1767.01	16.386770	0.707350				
9:	2099.21	6.702060	0.075705				
10:	3499.49	38.647287	0.186526				
11:	3645.45	0.000000	0.00000				
The firs The tota	st frequency con al number of vil	nsidered to b brations con:	be a vibration is 6 sidered is 6	5			

Visualize the Raman spectrum using "orca_mapspc myoutput.out raman -w50" in the command line in the folder of the output.

9

We can also use Avogadro to visualize the Raman spectrum.

Display Settings			
	Vibrations		8 ×
	Filter:		km/mol
	ν (cm ⁻¹)	l (km/mol)	Activity
	1277.66	6.411	0.000
	1397.45	29.586	0.000
	1767.01	4.193	16.387
	2099.21	8.425	6.702
	3499.49	1.793	38.647
	3645.45	19.989	0.000
		1	
		how Spectra	
	Animation Amplitude: <u>N</u> ormaliz Display f Animatio	e displacement force <u>v</u> ectors on speed set by	ts v frequency
	Start Ar	nimation	Pause

We can also use Avogadro to visualize the Raman spectrum.

Spectra Visualization	_	\Box \times
88 g 	1277.66 1397.45 1767.01	0.000000 0.000000 0.424008
Transmittan	2099.21 3499.49 3645.45	0.173416 1.000000 0.000000
0		
Raman Load data Advanced < Close Appearance Export Image Infrared Spectra Settings Raman Settings		
Y Axis Units: Transmittance ▼ Intensities Temperature: 298.15 K ♥ Laser Wavenumber: 9381.50 cm ⁻¹ ♥		
Scale Factor: 1.0000		
<u>P</u> eak Width: 40.0	Export	t Data
▶ Points per Peak: Label peaks Threshold: 0.00		

UV-Visible spectroscopy

Most molecules and ions absorb energy in the ultraviolet or visible range. The absorbed photon excites an electron to higher energy molecular orbitals, an excited state.

Excited-state calculations with ORCA

With ORCA, we can use TD-DFT, single-excitation CI (CIS) and RPA to calculate excitation energies, absorption intensities and CD intensities. Here we focus on **TD-DFT** method.

Key words:

The simplest input only requires the number of roots in the **%TDDFT NROOTS 10 END** block.

We can determine the triplet excitation energies in addition to the singlets for closed shell reference systems using the **%TDDFT TRIPLETS TRUE END** block.

For methods with implemented analytical gradient calculation, a given state can be selected for geometry optimization with the help of the **lroot** keyword. 13

In TD-DFT, the oscillator strength fI, which determines the probability of a singlet excitation happening through the absorption of light, is given by

$$f_{I} = \frac{2}{3} \Delta_{I} \left| \sum_{ia} \sqrt{\frac{2\Delta_{ia}}{\Delta_{I}}} F_{ia,I}^{S} \langle \varphi_{i} | \vec{r} | \varphi_{a} \rangle \right|^{2}$$
$$\vec{d}_{I}$$

Here $\overrightarrow{d_{ia}}$ is the transition dipole moment of the single orbital transition i \rightarrow a. Their linear combination determines the transition dipole moment $\overrightarrow{d_I}$ of the excitation, from which the oscillator strength is then calculated.

UV-Visible spectroscopy practice:

predict the absorption spectrum for COH₂, using the following coordinates, at B3LYP/DEF2-SVP level of theory.

```
! B3LYP DEF2-SVP
%TDDFT NROOTS 10
END
```

```
* int 0 1
```

```
C 0 0 0 0.00 0.0 0.00
```

```
0 1 0 0 1.20 0.0 0.00
```

```
H 1 2 0 1.08 120 0.00
```

```
H 1 2 3 1.08 120 180.00
```

After the termination of the calculations, we can find the excitation energies, the single orbital transitions involved and their contribution under "TD-DFT/TDA EXCITED STATES (SINGLETS)" in the output.

TD-DFT/TDA EXCITED STATES (SINGLETS)

the weight of the individual excitations are printed if larger than 1.0e-02STATE 1: E= 0.147972 au 4.027 eV 32476.0 cm**-1 <S**2> = 0.000000 7a -> 8a : 0.998161 (c= -0.99907991) STATE 2: E= 0.304471 au 8.285 eV 66823.6 cm**-1 <S**2> = 0.000000 0.995298 (c= 0.99764613) 7a -> 9a : STATE 3: E= 0.336509 au 9.157 eV $73855.1 \text{ cm}^{*-1} < S^{*+2} = 0.000000$ 5a -> 8a : 0.992904 (c= -0.99644587) STATE 4: E= 0.357673 au 9.733 eV 78500.2 cm*-1 <S*2> = 0.000000 6a -> 8a : 0.245470 (c= -0.49544897) 7a -> 10a : 0.729621 (c= 0.85417881) STATE 5: E= 0.390095 au 10.615 eV 85615.9 cm**-1 <S**2> = 0.000000 4a -> 8a : 0.996612 (c= 0.99830471) STATE 6: E= 0.408972 au $89758.9 \text{ cm} \times -1 < S \times 2 = 0.000000$ 11.129 eV 0.996262 (c= 0.99812904) 7a -> 11a : STATE 7: E= 0.427641 au 11.637 eV 93856.3 cm**-1 <S**2> = 0.000000 4a -> 10a : 0.016113 (c= -0.12693649) 5a -> 9a : 0.027984 (c= -0.16728341) 5a -> 11a : 0.023415 (c= -0.15302044) 5a -> 17a : 0.010868 (c= 0.10424909) 6a -> 8a : 0.620793 (c= 0.78790421) 7a -> 10a : 0.241904 (c= 0.49183710) 7a -> 14a : 0.029849 (c= -0.17276957)

We can also find the oscillator strengths and transition electric dipole moments under "ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS"

	ABSORPI	ION SPECT	TRUM VIA TRANS	ITION ELEC	TRIC DIPOL	E MOMENTS	
State	Energy (cm-1)	Waveler (nm)	ngth fosc	T2 (au**2)	TX (au)	TY (au)	TZ (au)
1	32476.0	307.9	0.00000000	0.00000	0.00000	-0.00000	0.00000
2	66823.6	149.6	0.137503568	0.67742	-0.00000	0.82306	-0.00000
3	73855.1	135.4	0.002198722	0.00980	0.00000	0.00000	-0.09900
4	78500.2	127.4	0.007957520	0.03337	-0.18268	0.00000	0.00000
5	85615.9	116.8	0.000000000	0.00000	0.00000	-0.00000	-0.00000
6	89758.9	111.4	0.017916546	0.06571	-0.00000	0.25635	0.00000
7	93856.3	106.5	0.535168085	1.87716	-1.37010	0.00000	-0.00000
8	94588.3	105.7	0.004140266	0.01441	-0.00000	-0.00000	0.12004
9	106443.0	93.9	0.084604300	0.26167	-0.51154	0.00000	0.00000
10	106543.4	93.9	0.000000000	0.00000	-0.00000	0.00000	0.00000

The visualization of the absorption spectrum can be done in Avogadro using spectra in extensions menu and then changing to absorption:

We can change the units, peak width and other spectral characteristic through Advanced>>Absorption Settings.

19

Further analysis can be done on the nature of the orbitals involved in each excitation using Charge difference density (CDD) figures using "orca_plot gbwfilename –i".

	3 - Enter operator of orbital (0=alpha,1=beta)	
	4 - Enter number of grid intervals	
	5 - Select output file format	
	6 - Plot CIS/TD-DFT difference densities	
	7 - Plot CIS/TD-DFT transition densities	
	8 - Set $AO(=1)$ vs $MO(=0)$ to plot	
	9 - List all available densities	
	10 - Generate the plot	
ho	11 - exit this program 📊	
	Enter a number: 5 <	
of	File-Format is presently: 5	
UI	1 - 2D Origin format -	
d in	2 - 2D HPGL format	
	3 - 2D Gnuplot binary format	
σ	4 - 2D Gnuplot ascii format	
5	5 - 3D gOpenMol binary	
	6 - 3D gOpenMol ASCII	
	7 - 3D Gaussian cube	
20	8 - 3D simple format 🎧	
	Enter Format: 7	
	Current-settings:	
	PlotType MO-PLOT	
	MO/Operator 0 0	
	Output file C:\Users\Admin\Desktop\TCCW2024\myexcercise\TDDFT\uv-s.cisdp10.	plt
	Format Grid3d/Cube	
	Resolution 40 40 40	
	Boundaries8.020452 9.267671 (x direction)	
	-8.767475 8.767475 (y direction)	
	-7.000000 7.000000 (z direction)	

1 - Enter type of plot

2 - Enter no of orbital to plot

Further analysis can be done on the nature of the orbitals involved in each excitation using Charge difference density (CDD) figures using "orca_plot gbwfilename –i".

We can then visualize the CDD cubes using GaussView > results > surfaces/contours > surface actions > new surface.

St1: 7a \rightarrow 8a

Absorption spectroscopy

The absorption rates between an initial and final electronic states under the Born-Oppenheimer and harmonic approximations, converted to the time domain are as follows:

$$k(\omega) = \frac{2\omega^3}{3\pi c^3 Z} \sum_{if} e^{-\frac{\epsilon_i}{k_B T}} \langle \Theta_i | \vec{\mu}^e | \bar{\Theta}_f \rangle \langle \bar{\Theta}_f | \vec{\mu}^e | \Theta_i \rangle \int e^{i(E_i - E_f - \omega)t} dt,$$

With ω being the incident photon frequency,

- $\overrightarrow{\mu^{e}}$ being the electronic transition dipole,
- $|\Theta\rangle$ the vibrational wavefunction of the initial or final state,
- $e^{\frac{-\epsilon_i}{k_B T}}$ is the Boltzmann population of a given initial state at temperature *T*,
- E_i and E_f are the initial and final vibronic energies,
- and ϵ_i is the total vibrational energy of state *I*.

Absorption calculations with ORCA_ESD

The Excited State Dynamics (**ESD**) module of ORCA solves an analytic solution to the path integral of the Multidimensional Harmonic Oscillator absorption rate. **(keyword ESD(ABS))**

If one considers that the electronic part of the transition dipole varies with nuclear displacements and we allow for it to depend on the normal coordinates (**Q**), such as:

$$\vec{\mu}^e(\mathbf{Q}) = \vec{\mu}_0^e + \sum_i \left. \frac{\partial \vec{\mu}^e}{\partial Q_i} \right|_{\mathbf{Q}=0} Q_i + \dots,$$

we can even include vibronic coupling or the so-called Herzberg-Teller (HT) effect. (block %ESD DOHT TRUE END) 24

Excited state (ES) geometry and Hessian in ORCA_ESD

In order to predict absorption or emission rates, one needs both the ground state (GS) and excited state (ES) geometries and Hessians.

Adiabatic Hessian (AH) method

- When you optimize the ES geometry and input the Hessian.
- No keyword must be given on the input.
- Although the ideal model, it is challenging and time consuming!

In ORCA, we have seven different ways to approximate this ES PES: AHAS, VH, VG, HHBS, HHAS, UFBS and UFAS (only available for Absorption, Fluorescence and resonant Raman). 25

The idea behind these approximations is to do a geometry update step ($\Delta q_c = -gB^{-1}$ for Quasi-Newton and $\Delta q_c = -g(B + S)^{-1}$ for Augmented Hessian) to obtain the ES structure and somehow approximate the ES Hessian.

Method	Step	ES Hessian
AHAS	ES grad + GS Hessian	calculated on the ES geometry
VH	ES grad + ES Hessian at GS geometry	calculated on the GS geometry
VG (default)	ES grad + GS Hessian	equal to GS Hessian
VGFC	ES grad + GS Hessian	equal to GS Hessian (+
HHBS	ES grad + Hybrid ES Hessian on GS geometry	Hybrid Hessian on GS geometry
HHAS ES grad + GS Hessian		Hybrid Hessian on ES geometry
LIEDS	ES grad + Updated frequencies ES	Updated frequencies ES Hessian on GS
UF BS	Hessian on GS geometry	geometry
UFAS	ES grad \pm CS Hessian	Updated frequencies ES Hessian on ES
OFAS	$100 \text{ grav} \pm 00 \text{ messial}$	geometry

Vertical Gradient (VG) model, the minimal approximation

- The excited state (ES) Hessian is equal to the GS, from which we extrapolate the ES geometry from the ES gradient and that Hessian using some step (Quasi-Newton or Augmented Hessian, which is the default here).
- The default method in ORCA.

Adiabatic Hessian After a Step (AHAS) model

- A reasonable compromise between a full geometry optimization and a simple step with the same Hessian is to do a step and then recalculate the ES Hessian at that geometry.
- Highly recommended by ORCA developers in general.

Absorption using ESD module practice:

predict the absorption spectrum for benzene, which has one band above 220 nm corresponding to a symmetry forbidden excitation to the S1 state, using the following coordinates, at B3LYP/DEF2-SVP level of theory. Use VG, AHAS and AH methods and compare the results.

First step: the GS information is obtained through an optimization and frequency calculation.

!B3LYP DEF2-SVP OPT FREQ
* XYZFILE 0 1 BEN.xyz

Second step: Using the optimized geometry, the absorption spectrum with the VG method can be done by calling the ESD module with the VG method in %ESD block with Herzberg-Teller approximation.

!B3LYP	DEF2-SVP	TIGHTSCI	F ESD(ABS)
%TDDFT	NROOTS	5	
	IROOT	1	
END			
%ESD	GSHESSI	AN	"BEN.hess"
	DOHT		TRUE
	HESSFLAC	G	VG #DEFAULT
END			
* XYZFI	ILE 0 1 BI	EN.xyz	

Third step: Using the optimized geometry, the absorption spectrum can be done by calling the ESD module with the AHAS method in %ESD block with Herzberg-Teller approximation:

!B3LYP	DEF2-SVP	TIGHTSC	F ESD(ABS)
%TDDFT	NROOTS	5	
	IROOT	1	
END			
%ESD	GSHESSI	AN	"BEN.hess"
	DOHT		TRUE
	HESSFLA	G	AHAS
END			
* XYZFI	ILE 0 1 BI	EN.xyz	

Fourth step: For the AH method, the ES S1 information is obtained through an optimization and frequency calculation for the desired excited state (**IROOT in %TDDFT**).

Fifth step: Having both Hessians, we call the ESD module and specify the desired excited state number, ground and excited Hessians and performance of Herzberg-Teller calculations:

B3LYP	DEF2-SVP	TIGHTSCF	ESD(ABS)
%TDDFT	NROOTS	5	
	IROOT	1	
END			
%ESD	GSHESSI	AN	"BEN.hess"
	ESHESSI	AN	"BEN_S1.hess"
	DOHT		TRUE
END			
* XV7F		EN XVZ	

As you can see the FC intensity is less than 1% of the HT intensity here, so the need to include HT effect.

Energy	TotalSpectrum	IntensityFC	IntensityHT
10807.078728	2.545915e-02	2.067393e-07	2.545894e-02
10828.022679	2.550974e-02	2.071508e-07	2.550954e-02
10848.966630	2.556034e-02	2.075624e-07	2.556013e-02

It is important to say that, in theory, the absorbance intensity values correspond to the experimental ε (in L mol cm⁻¹), and they are dependent on the spectral lineshape.

As we see, even the defaults produce a close spectrum to experiment and it can become much better using better approximations.

Figure 8.39: Experimental absorption spectrum for benzene (black on the left) and some predicted using ORCA_ESD at various PES approximations. 34

Thank you for your attention